Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
J Med Virol ; 95(1): e28411, 2023 01.
Article in English | MEDLINE | ID: covidwho-2173197

ABSTRACT

A series of nonpharmaceutical interventions (NPIs) was launched in Beijing, China, on January 24, 2020, to control coronavirus disease 2019. To reveal the roles of NPIs on the respiratory syncytial virus (RSV), respiratory specimens collected from children with acute respiratory tract infection between July 2017 and Dec 2021 in Beijing were screened by capillary electrophoresis-based multiplex PCR (CEMP) assay. Specimens positive for RSV were subjected to a polymerase chain reaction (PCR) and genotyped by G gene sequencing and phylogenetic analysis using iqtree v1.6.12. The parallel and fixed (paraFix) mutations were analyzed with the R package sitePath. Clinical data were compared using SPSS 22.0 software. Before NPIs launched, each RSV endemic season started from October/November to February/March of the next year in Beijing. After that, the RSV positive rate abruptly dropped from 31.93% in January to 4.39% in February 2020; then, a dormant state with RSV positive rates ≤1% from March to September, a nearly dormant state in October (2.85%) and November (2.98%) and a delayed endemic season in 2020, and abnormal RSV positive rates remaining at approximately 10% in summer until September 2021 were detected. Finally, an endemic RSV season returned in October 2021. There was a game between Subtypes A and B, and RSV-A replaced RSV-B in July 2021 to become the dominant subtype. Six RSV-A and eight RSV-B paraFix mutations were identified on G. The percentage of severe pneumonia patients decreased to 40.51% after NPIs launched. NPIs launched in Beijing seriously interfered with the endemic season of RSV.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Beijing/epidemiology , Phylogeny , COVID-19/epidemiology , COVID-19/prevention & control , Respiratory Syncytial Virus, Human/genetics , Multiplex Polymerase Chain Reaction
2.
Innovation (Camb) ; 3(2): 100221, 2022 Mar 29.
Article in English | MEDLINE | ID: covidwho-1713028

ABSTRACT

The highly pathogenic and readily transmissible SARS-CoV-2 has caused a global coronavirus pandemic, urgently requiring effective countermeasures against its rapid expansion. All available vaccine platforms are being used to generate safe and effective COVID-19 vaccines. Here, we generated a live-attenuated candidate vaccine strain by serial passaging of a SARS-CoV-2 clinical isolate in Vero cells. Deep sequencing revealed the dynamic adaptation of SARS-CoV-2 in Vero cells, resulting in a stable clone with a deletion of seven amino acids (N679SPRRAR685) at the S1/S2 junction of the S protein (named VAS5). VAS5 showed significant attenuation of replication in multiple human cell lines, human airway epithelium organoids, and hACE2 mice. Viral fitness competition assays demonstrated that VAS5 showed specific tropism to Vero cells but decreased fitness in human cells compared with the parental virus. More importantly, a single intranasal injection of VAS5 elicited a high level of neutralizing antibodies and prevented SARS-CoV-2 infection in mice as well as close-contact transmission in golden Syrian hamsters. Structural and biochemical analysis revealed a stable and locked prefusion conformation of the S trimer of VAS5, which most resembles SARS-CoV-2-3Q-2P, an advanced vaccine immunogen (NVAX-CoV2373). Further systematic antigenic profiling and immunogenicity validation confirmed that the VAS5 S trimer presents an enhanced antigenic mimic of the wild-type S trimer. Our results not only provide a potent live-attenuated vaccine candidate against COVID-19 but also clarify the molecular and structural basis for the highly attenuated and super immunogenic phenotype of VAS5.

4.
Cell Res ; 31(1): 25-36, 2021 01.
Article in English | MEDLINE | ID: covidwho-1387275

ABSTRACT

Structural principles underlying the composition and synergistic mechanisms of protective monoclonal antibody cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic antibody cocktail against SARS-CoV-2. On the basis of our previously identified humanized cross-neutralizing antibody H014, we systematically analyzed a fully human naive antibody library and rationally identified a potent neutralizing antibody partner, P17, which confers effective protection in animal model. Cryo-EM studies dissected the nature of the P17 epitope, which is SARS-CoV-2 specific and distinctly different from that of H014. High-resolution structure of the SARS-CoV-2 spike in complex with H014 and P17, together with functional investigations revealed that in a two-antibody cocktail, synergistic neutralization was achieved by S1 shielding and conformational locking, thereby blocking receptor attachment and viral membrane fusion, conferring high potency as well as robustness against viral mutation escape. Furthermore, cluster analysis identified a hypothetical 3rd antibody partner for further reinforcing the cocktail as pan-SARS-CoVs therapeutics.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 , Epitopes/immunology , SARS-CoV-2/immunology , Single-Chain Antibodies/immunology , Animals , Antibodies, Neutralizing/pharmacology , Antibodies, Viral/pharmacology , COVID-19/immunology , COVID-19/prevention & control , Chlorocebus aethiops , Disease Models, Animal , Humans , Single-Chain Antibodies/pharmacology , Vero Cells
5.
Cell Res ; 31(4): 404-414, 2021 04.
Article in English | MEDLINE | ID: covidwho-1054016

ABSTRACT

The newly identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a global health emergency because of its rapid spread and high mortality. The molecular mechanism of interaction between host and viral genomic RNA is yet unclear. We demonstrate herein that SARS-CoV-2 genomic RNA, as well as the negative-sense RNA, is dynamically N6-methyladenosine (m6A)-modified in human and monkey cells. Combined RIP-seq and miCLIP analyses identified a total of 8 m6A sites at single-base resolution in the genome. Especially, epidemic strains with mutations at these identified m6A sites have emerged worldwide, and formed a unique cluster in the US as indicated by phylogenetic analysis. Further functional experiments showed that m6A methylation negatively regulates SARS-CoV-2 infection. SARS-CoV-2 infection also triggered a global increase in host m6A methylome, exhibiting altered localization and motifs of m6A methylation in mRNAs. Altogether, our results identify m6A as a dynamic epitranscriptomic mark mediating the virus-host interaction.


Subject(s)
Adenosine/analogs & derivatives , Genome, Viral , SARS-CoV-2/genetics , Adenosine/metabolism , Animals , COVID-19/pathology , COVID-19/virology , Cell Line , Chlorocebus aethiops , DNA Methylation , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Mutagenesis, Site-Directed , Phylogeny , RNA, Messenger/genetics , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Vero Cells , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL